APPLICATION OF METHOD OF LOCAL POTENTIAL
TO THE BENARD PROBLEM IN A UNIFORM MAGNETIC
FIELD

A, 1. Lopushanskaya and V., N, Kapranov UDC 536,75

The method of local potential is used to solve the Bénard problem in a uniform magnetic field
in the case when the two houndary surfaces are free. The results obtained are in agreement
with those known from the literature,

The thermodynamic theory of stability, possessing a considerable degree of generality {(which enables
different systems to be described from unified positions), distinguishes two approaches: the first connected
with Lyapunov's second method [1], when the characteristic function is taken to be the deviation of the entropy
from its value in the stationary state (628)0 [2, 3]; the second, the method of local potential [3~-5], connected
with the method of characteristic indices, The latter method is used by us to investigate the Bénard problem
in a uniform magnetic field,

We consider a thin layer of incompressible, conducting, electrically neutral fluid of thickness d heated
from below and situated in gravitational and uniform magnetic fields. We assume that the fluid is nonpolariz-
able and that the displacement current can be neglected. Introducing the dimensionless quantities
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we obtain using Maxwell's equations the following expressions for the balance of mass, momentum, magnetic
field intensity, and heat transport in the Boussinesq approximation:
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We investigate the stability of the steady state of a fixed layer of fluid situated between two surfaces at
constant temperatures T° and T; in a uniform magnetic field directed along the z axis. The steady state is
described by the equations

Voo, H =ty TI=T0—2;
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where T and o denote the temperature and density on the lower boundary, and A =(0, 0, 1). Setting

Vi=U, H=H'+h, T=T"+
=" 4+ 8, p=p¥+8p,
we obtain the system of perturbed equations
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" Applying the curl operator twice to the second equation and multiplying by A, We arrive at
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Introducing into (6) the perturbations
U, = W (z) cos k,x cos ky exp fit,
h, = h(z)cos k,x cos kyyexp Bt,
8 = 0 (2) cos k,x cos b,y exp pt

gives the equations

P(D*— k) (D — 2 —B) W = P1 oD@ — )1 = kR0,
Py (7)
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where
dn

Dr=——, K= kL -+ ky,

whose solutions must satisfy the boundary conditions
W=0=0 for 2==0, z=1
and ’
DW = ( on a rigid boundary,

DWW == (Q on a free boundary,

and h is continuous with the external field for a nonconducting boundary and equals zero on a perfectly conduct-
ing surface,

The stationary state will be unstable if Rep >0, and stable if Re8 <0, The case Reff =0 determines a
critical state separating regions of stabilily and mstabﬂity. If Imp =0 (principle of change of stability satisfied),
the critical state is stationary; otherwise, it is oscillating (superstability).
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1f the principle of change of stability holds, we obtain, getting 2 =0 in (7),

P,(D*— kP W % QD (D* — k* h = k*R0,
2

D*—r)o=—PW, &)
(D* — B h = —P,DV.

The structure of the equations of system (8) is such that the number of unknown functions can he reduced
by eliminating some of them (for example, h or 8, h). Thus, by inserting the latter equation of system (8)
into the first or by using the operator (D? — k?, allowing for the second and third equations, we obtain

P, [(D?—k?)? — QDY W = £*RO, (D* — )0 = —P,W (9
and
D — &) (D*— R — QD W = — RE*W (10)
with corresponding boundary conditions.
In many cases it is very difficult and even impossible to find the exact eigenfunctions and frequencies,
and for this reason it is advantageous to employ the variational technique of local potential [3, 5]. In order

to obtain the local potential we multiply the second, third, and fourth equations in (2) by —GUi, —386, —6hy, add, and
integrate by parts terms containing 6Ui and 66 remembering that
2
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at ot 2 ot
{(A; is a scalar, or the component of a vector or tensor) and that 0U; and 66 equal zero on the boundary, We
then find that
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The potential ® depends on two types of variable: fluctuating and nonvarying. The latter we indicate by the
superscript 0,

It is evidert that 6&=0 for additional conditions leads to the system of equations (2) and A®>0, Accord-
ingly [3], ® is a suitable potential of our problem,

Choosing
U, = W () cos k,x cos k,y exp Bt;
h, == h (2) cos k.x cos k,y exp ft;

k -
U,= — —k;f- (DW) cos k,y sin kx exp Bt;
k . .

h,=— 7’; (Dh) sin k, x cos k,y exp fit; (12)
U, =— Ry (DW) cos k,x sin &,y exp pt;
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(similar expressions are chosen for the nonvarying quantities) and substituting into (11), we obtain the poten-
tials

0= Jda | ROOW -t [ BWE L 2DV 4 o W]
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2

by the Euler—Lagrange equations, given by the system of equations (7), (8) for the additional conditions A=
Ai In the same manner as agbove it is possible to obtain potentials that depend on a smaller number of un-
known functions, Thus, for example, on making the substitution

Al—~(D*— —Pf) A},
LA~ A (DP— B —P) A,

in terms containing W ‘and taking account of the third equation of (7), or making the substitution

Al (D2— P — PR (D*— K —PP) A,
AiAi g Ai (D?— 2 — P,p) (D*— 2 — P.B) Ai

'and taking account of the second and third equations of (7), it is possible to convert (13) to
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which depend on two and one unknown functions, respectively. Trial functions are chosen depending on the
type of boundary surfaces.

Let us consider the case when both boundary surfaces are free.
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2) Appearance of Instability as Stationary Convection, Substitution of the third equation of (8) into (14)
leads to the expression e

ol = jdz {— ROW + —';_L [szz +2(DW) + -klz— (D“‘V)”] T
+ % Q (DW) (DW") + % [(DO)? + #6%] — PIW“B}, an

which is the potential of problem (9).
We prescribe the unknown functions in the form

W = Asinnz; 0 = Bsinnz; W° = A%sin niz; 6° = B®sin nz, (18)
where the constants A, B; are determined from the condition
() - A =4,
0A 0 40, B;. ‘
aq)i B,_ i O B? — Bi, (19)
(%5 ) ™
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In this manner we obtain
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which gives
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Tn a similar manner potential (14) and trial functions
W = Asinnz; 8 =Bsinnz, h=Ccosnz (22)
with conditions (19) give
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k2 P2 k2 (23)
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which reduces to (21),

b) Appearance of Instability as Oscillating Convection, Utilizing (13) and perturbations (22), we arrive

at

a
k2
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—PaA 4+ (R24 2+ PR C =0,
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from which we find
(B + 7 4 P B)a® + RA(R® + n® + Pf) (& + n? 4 B) 4 7°Ql = RE* (n* + B2 + P,B). (25)
In a similar manner potential (15) and perturbations (18) or (16) and W =A sin IIz again give (25),

1t follows from (25) [6] that for oscillating solutions to exist the condition % > n mustbe satisfied. Then,
for given P; and P,, superstability is possible only if Q is greater than a certain Ql.

The results obtained by.the thermodynamic method using various local potentials thus coincide among
themselves and with the exact solution, which is connected with the fortunate choice of the trial functions.

The use of potentials with a smaller number of unknown functions is to be preferred since this reduces
the degree of arbitrariness, which increases as the number of functions being varied increases, and enables
a better choice to be made as the amount of information on the conditions imposed on them accordingly also
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increases, Furthermore, the possibility of increasing the number of variable parameters arises, which makes
the trial functions more flexible without noticeably increasing the volume of computations,

The method continues to workquite effectively in those cases when the number of unknown functions can-
not be reduced, although perhaps slightly less accurately.

NOTATION

V;, Hj, components of velocity of center of mass and magnetic field intensity; p, density; p, pressure;
u, magnetic susceptibility; T, temperature; w, thermal diffusivity; o, electrical conductivity; @, coefficient
of thermal expansion; A, vector with components (0, 0, 1); V, Hamiltonian operator; AT, temperature drop
between boundaries.
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EFFECTS OF T_HERMOELASTIC STRESS DURING
HONING ON COMPONENT DIMENSIONS

A, N, Reznikov, T. N. Belyaeva, UDC 621,923, 5:539,3
and G. N. Gutman

Equations are given for the temperature distribution and thermoelastic deformations arising
in the workpiece and tool during honing, as well as a method for determining the corrections
for the temperature errors in adjusting auntomatic~control devices,

The uses of honing are extending continually; when the process is introduced, it is usually necessary to
provide automatic monitoring of workpiece dimensions.

In turn, the setting-up procedure for the monitoring requires information about the errors arising from
thermal expansion of the workpiece and the tool, since the latter can be very important, especially for thin-
walled components.

The thermal deformation can be determined from the temperature distribution produced in the workpiece
1 and honing rod 2 (Fig. 1), with subsequent calculation of the deformation on the basis of the theory of elastic-
ity.

The hone rotates at a relatively high speed, and the area of contact with the workpiece is fairly large,
S0 one can assume that the temperature over the entire inner surface of the component is the same to a first
approximation and equal to the contact temperature 6c. We may also suppose that the outer surface A of the
workpiece 1 (Fig. 1) has boundary conditions of the third kind, since this surface is usually cooled by a con-
tinuous flow of liquid.

The temperature of the coolant (kerosene) and the initial temperature of the workpiece may be taken as
nominally zero,
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